May 2000

Glow Friends

Lehigh University, 2002 - $13,500

This E-Team developed Glow Friends, an electronic friendship bracelet and one of the few high-tech toys on the market targeted specifically at young girls ages seven to thirteen.

The Glow Friends bracelet, which features a heart-shaped rhinestone center that glows when the bracelet is on as well as six additional light-emitting rhinestones along the band, interacts with other bracelets -- it can be "synchronized" by its owner. When a synchronized friend gets within 300 feet of the bracelet wearer, a rhinestone on her bracelet glows every thirty seconds. As the friend grows closer, the rhinestone glows brighter. The six rhinestones can recognize up to six friends.

The Glow Friends E-Team consists of five undergraduates in marketing, computer engineering, business, electrical engineering and fine arts. They work with faculty in business, economics, and electrical engineering.

Learning Innovation and Invention through Doing

Cooper Union for the Advancement of Science and Art

This project supports the incorporation of E-Teams into Franklin W. Olin's "Olin Hatchery," a resource center supporting student-initiated ventures on campus. E-Teams form early on, in the sophomore year, with the idea that the teams will continue their work through their junior and senior years

Technological Entrepreneurship

University of Pittsburgh-Pittsburgh Campus

Northeastern University is creating a School of Technological Entrepreneurship, and has already raised $3 million for the startup. The vision is a professional school that can become a national leader in education and research at the intersection of technology development and business creation--Technological Entrepreneurship. This grant supports an undergraduate concentration in Technological Entrepreneurship consisting of five joint courses, which will allow the engineering students to complete an accredited engineering degree and the business students an accredited business degree. This grant will help fund twelve undergraduate E-Teams consisting of ninety-six students--sixty engineering students and thirty-six business students

The Global Design Solutions Project

Finlandia University

Finlandia University, Hancock, Michigan and Columbia College, Chicago, share a design education philosophy that is linked to the real world. Finlandia University partnered with the Kuopio Academy of Design to adopt the business-based Finnish education model which requires a cross-disciplinary design and business curriculum. Columbia College engages students with as many real life design problems as possible, requiring innovation in their problem-solving approach to design problems.

This grant supports a collaborative program between the two institutions--The Institute for Global Design Education--which will marry the strengths of their design programs. Ultimately, the institute will be a consortium of international design schools and corporations that will identify, consider and solve international design problems.

This grant supports phase one of institute development in which both institutions will integrate the E-Team concept into their curriculum on a permanent basis. In phase one, Finlandia University will develop two new classes in design and entrepreneurship, while Columbia College integrates E-Teams into its existing course structure. Finlandia proposes to offer the Art and Design Project Management and Art and Design Project courses as a continuing project learning structure within the Art and Design Program. The courses will allow student teams to pursue project work in their sophomore and junior spring semesters, leading up to their senior final project. Columbia College will integrate E-Teams into their five studio sequence. The first three studios teach materials and techniques, design paradigms and product semantics, while the fourth and fifth studios facilitate team project work. E-Teams at both schools will pursue solutions to real-world problems offered by corporate partners including, ED Designs, the largest design firm in Finland; Wilson Sporting Goods, Chicago; and Kone from Moline, Illinois

Invention and Innovation in New Product Development: Freshman/Sophomore, Junior/Senior, Graduate Course Sequence

Missouri State University

In 1997, the Department of Mechanical Engineering launched its Managing New Product Development course. This graduate course is part of the Management of Technology Program at the University of California, Berkeley. It specifically aims to develop interdisciplinary skills in students, for successful product development in today's competitive marketplace. To accomplish a truly multi-disciplinary course experience, the course is cross-listed in three UC Berkeley Colleges including Architecture and Engineering, Business, and Information Management and Systems, and at the California College of Arts and Crafts. Students from these colleges team to work through all stages of new product development, learning useful tools and techniques to execute each step of the process. The course is extremely popular with students, and tends to over-enroll. However, although the course is successful, it has several limitations. One, the course does not support E-Team projects past the end of the semester; two, it does not provide students with seed money to cover project costs.

Drawing from lessons learned in the Managing New Product Development course, the principal investigators will develop two new courses, and improve the Managing New Product Development course. In all three courses, NCIIA funding will provide seed money for E-Team projects during the semester, and support for especially promising teams at the close of the semester. The first new course is called Designing Technology for Girls and Women. This lower division course will cover gender issues associated with new product development. In it, students will apply state-of-the-art information technology and new tools to tackle and design solutions to crucial societal problems where women are the end users. A major goal of the course is to motivate women students to persevere and thrive in engineering. Designing Technology for Women and Girls will work closely with the Institute of Women and Technology and companies within the San Francisco Bay area. The second new course, Introduction to Product Development, provides students with an operational experience in the development of innovative and realistic engineered problems. The course will introduce design concepts and techniques, and will guide students through the process of developing a design or feasibility study. Students will make both individual and group oral presentations, and participate in conferences

Experimental Haptics

Stanford University, 2002 - $27,000

In 2002, the Computer Science and Surgery Department at Stanford University offered CS277, Experimental Haptics, one of the first courses in haptics taught in the U.S. "Haptics" is the dynamic interaction of proprioception (our sense of space around the body), kinesthesis (our perception of external forces on the body), and tactility (our ability to sense the properties of surfaces on the skin), and of the science of using machines to stimulate these systems. The course provides students with basic knowledge of haptics, including current research and commercial potential. Students in the course gain a basic set of tools for developing hardware and software for haptics interfaces. They then form E-Teams to pursue independent projects in haptics with support of the course administrators and the Stanford Haptic Laboratory. Projects from last year's course included: linking the SensAble Phantom to a Sony Playstation to make the surgical simulation available on a low-cost computer platform; developing "Haptic Battle Pong," a video game that integrates the advanced sensibilities of the Phantom; and developing a haptic interface that uses mechanical brakes to simulate contact with virtual objects. In addition to project work, E-Teams attend a lecture series featuring key pioneers in haptic technology.

This project will improve Experimental Haptics with support from the NCIIA, based on lessons learned from the initial course. Though the first course was successful, it lacked several elements that would allow students to pursue even more complex projects or turn existing projects into commercially viable products. Students lacked access to computer hardware and haptic devices crucial to project development. The proposal requests funds for haptic interface hardware, three computers, additional supplies for hardware projects, and patent/publication/marketing funds.

Entrepreneurial Marketing Course

North Carolina State University at Raleigh

Currently, the University of Wisconsin, Whitewater (UWW) offers only one course in entrepreneurship: Product Development. This course covers the process of developing a new product in the context of an established business. In an effort to expand its entrepreneurship program, the UWW Innovation Center will develop a new course in entrepreneurial marketing for new ventures, based on those offered at the University of Pennsylvania's Wharton School and Syracuse University.

The Entrepreneurial Marketing course focuses on the key marketing strategies relevant for new venture initiation, as well as marketing decisions for small and growing organizations. In the course, students learn to:

  • apply marketing concepts to entrepreneurial company challenges
  • take on the special challenges and opportunities involved with developing marketing strategies
  • identify entrepreneurial opportunities from emerging trends in marketing practice
  • develop inexpensive, valid approaches to identifying customer needs and conducting market research
  • design creative approaches to marketing communications, and
  • explore the varying role of marketing strategies among entrepreneurial firms.
The course environment facilitates student acquisition and application of knowledge of new market venture strategies, recognizing variances in the process of different industries and companies

ChemoTemp

University of Miami

An adverse effect of chemotherapy is that it lowers patients' white and red blood cell production as it attacks their rapidly dividing cancer cells. Progressive reduction in red blood cell counts leads to anemia, while reduction in white blood cells leaves an individual susceptible to infection. In the event of infection, mortality rates for chemotherapy patients can reach as high as 70% if the patients are not promptly treated with antibiotics. Thus, quick detection of infection is critical to maintaining chemotherapy patients' health. Because fever is an indicator of infection, chemotherapy patients and their caretakers must monitor patients' temperatures to ensure patient health. When fever is detected, patients require prompt medical attention.

The ChemoTemp E-Team has developed a fever monitoring and reporting device for chemotherapy patients. Although a variety of related technologies are available on the market to track fever, these products do not provide the comprehensive service offered by ChemoTemp. The device accurately measures patient temperature, identifies fever and risk of fever, and reports fever conditions to the patient and/or caregiver. Patients can wear ChemoTemp comfortably for long periods of time. The E-Team has nearly completed an alpha version of the device, and plan to finish circuit and algorithm developments in the next phase of the project. The E-Team has conducted a market and patent search and found that no like products exist on the market specifically for chemotherapy patients. The team consists of twenty-three undergraduate students from the Junior/Senior Engineering Clinic course, including students from electrical and computer engineering, mechanical engineering, and possibly life sciences students. These students work with a team of twelve graduate students and the clinic course professor.

Smith Engineering Entrepreneurial Initiative

California Polytechnic State University-San Luis Obispo

The Picker Engineering Program is the first degree-granting engineering program at a women's college in the US. In its first year, the program attracted nineteen students; in 2002, twenty-one students declared Engineering majors. In the fall of 2002, fifty-three students enrolled in the Introduction to Engineering course, more than doubling the target number of enrollees.

The Picker Engineering Program strives to redesign engineering courses to make them more relevant to the challenges facing society today, to women, and to other underrepresented groups. The Engineering Design Clinic (EDC) is the program's senior capstone course. In EDC, student teams solve engineering problems posed by industry sponsors. While this is a valuable exercise, it does not introduce students to entrepreneurship.

With NCIIA funding, EDC E-Teams will have the option to pursue their own project ideas, rather than those posed by an industry sponsor. Teams of two to five students will be invited to submit proposals for a design clinic project based on an entrepreneurial idea in April of their junior year. The EDC Director will select teams to pursue their project ideas. EDC will offer entrepreneurship modules to help the entrepreneurial E-Teams progress through the stages of project development. In addition, E-Teams will work with faculty and advisors from the community, including local business leaders and entrepreneurs. The Picker Program will collaborate with the UMass Five Colleges Entreclub. EDC will offer an E-award to the entrepreneurial team that excels in innovation and entrepreneurship in their project work.

Applications of Bioengineering, Bioinformatics, and Basic Biological Science to Current Problems in Diabetes

Stanford University- 4000.00

The ability to understand human disease at the molecular and cellular levels has blurred the boundaries between the basic biological and chemical sciences, engineering, and clinical investigation. Because of this, students from a variety of disciplines want to understand medical problems so that they can successfully translate their research into useful clinical outcomes. In response to this educational need, a team of faculty in Biosciences, Medicine, Bioinformatics, Engineering and Education at Stanford University created a new course in 2001, Introduction to Medicine for Graduate Students in Biological Sciences, Bioengineering, and Bioinformatics. The central activity of the course is interdisciplinary team project work. E-Teams composed of three PhD candidates (one each from electrical engineering, management science and engineering, and one NASA-Ames continuing education student from the Stanford Center for Professional Development) identify an unsolved problem in diabetes and conceptualize a novel solution. Teams develop and present concept papers.

This project supports development of an extension course, Applications of Bioengineering, Bioinformatics and Basic Biological Science to Current Problems in Diabetes. The Applications course will enable E-Teams from the introductory course to further develop their project concepts and obtain preliminary results on their solutions and/or develop early prototypes of medical devices