May 2001

Location Specific Alarm Relay

Rutgers University-New Brunswick

Residential fires kill and injure thousands of Americans and cause billions of dollars in property damage each year. More than 428,000 home fires occurred in 1996, which resulted in a residential fire every 74 seconds, according to the National Fire Protection Association (NFPA). By the mid 1980s, laws that required alarms in all new and existing residences existed in 38 states and thousands of municipalities. Systems wired throughout the house are expensive to install and provide only a general alert, while standard smoke alarms are not interconnected. This E-Team’s Location Specific Alarm Relay (LSAR) system is designed to be installed in individual rooms, but has the ability to transmit data and can relate the location of smoke in the event of a fire. For example, the existence of smoke in the basement will be relayed to the second floor bedroom through a combined horn and voice alarm

Patient Rotation System for 3D Mammography

Vanderbilt University, 2004 - $18,500

Breast cancer is the second leading cause of death among women. Current mammography screening techniques, which use polychromatic X-ray sources and compression techniques to obtain images of the breast, have a number of shortcomings.

This E-Team developed a compressionless monochromatic 3D mammography screening system to improve on the old model. The Patient Rotation System is a model table on which a patient can be rotated to allow the system to produce accurate three-dimensional images. The team made the table movable, able to rotate with the breast as a center point in order to easily screen the breast and chest wall, and improved the comfort of the experience for mammography patients.

Feasibility study to analyze the economic value proposition and related marketing strategy for a modular, pressurized anaerobic digestion reactor

Stanford University

Dairy farmers, animal processing facilities, and wastewater treatment plants use biogas generated from the anaerobic digestion of organic matter to stabilize their waste streams, facilitating processing for disposal or its conversion into usable by-products. NCIIA funding supports this E-Team in completing a technical feasibility study for a modular reactor that pressurizes and purifies biogas produced from anaerobic digestion of biomass using a closed-loop system. This will be the first step toward the commercialization of biogas-producing technology for use by commercial, industrial, and consumer clients who could benefit greatly from a reliable source of clean, renewable energy.

The US water supply and wastewater treatment is a $110 billion industry, of which $32.1 billion (30%) was spent in 2002 on capital improvements at municipal wastewater treatment facilities. In the next six years, municipalities are expected to spend an additional $100 billion to meet state and federal environmental standards. The team’s goal is to determine a practical system design and identify appropriate markets for commercialization, developing a thorough understanding of the economic value proposition for this technology

Automated Page-Turner

University of Rhode Island, 2004 - $10,000

This E-Team developed a single-switch automated page-turner designed to aid people lacking manual strength and dexterity in reading a hardcover book. The device is user-friendly, single-switch activated, affordable, reversible, lightweight, portable and easy to load, utilizing a washable and renewable commercially available adhesive.

Arsenic 3

University of California, Berkeley, 2004 - $20,000

This E-Team developed a prototype device for removing arsenic from Bangladesh's drinking water. The device uses chemically treated bottom ash (residue left over from coal combustion) as the medium for removing arsenic. The invention is based on coating the surfaces of bottom ash particles with ferric hydroxide, and using this treated ash to react with, remove, and immobilize arsenic in water supplies. Lab results demonstrated that 5 gm of treated bottom ash can reduce arsenic concentration in 2.4 liters of water from 2400 ppb to 10 ppb.

The E-Team believes the final product’s pricing model will be proportional to table salt, costing <.30/kg per person per year. The business costs are also comparable to table salt.

The team consisted of four lab-based professionals in chemical engineering and physics.