September 2010

Cross-disciplinary development teams to make students' ideas real

Ohio Northern University, 2010 - $19,500

This grant supports the transformation of a year-long engineering capstone course into an E-Team-generating experience that takes the best new product ideas on campus and turns them into real prototypes and potential business ventures. There will be three steps to the program: 1) in a spring “Ideas Competition,” students will pitch their ideas to a review board made up of entrepreneurs/investors; 2) E-Teams will be formed around each of the five winning ideas; 3) the following spring, the E-Teams will compete in a business plan competition, with the winning teams receiving substantial funds to continue development of their projects beyond the capstone timeframe.

The teams will be comprised of students from engineering, business and law.

Bridge Mentorship Program for Advanced Student Companies at UMass Amherst

University of Massachusetts Amherst, 2010 - $29,000

The NCIIA-funded UMass Amherst Entrepreneurship Initiative (UMassEI), a one-credit course, has greatly increased student participation in entrepreneurship on University of Massachusetts Amherst campus, having grown from five students in 2007 to over 200 from thirty majors running over 100 active student companies. While UMass faculty are currently formalizing a program that connects the most advanced of these student companies to outside mentors, increasing their chances for success, there remains a large gap between the mature teams and the teams in need of support. Many student companies lack the maturity or level of development to take advantage of the mentorship program after completing the one-credit UMassEI class.

This grant will help bridge the gap and connect more students more effectively to outside programs and mentors. Faculty will develop a “bridge program” for students, with the objective of providing early student companies with the knowledge and support they need to cross the gap between completing the introductory course and reaping maximum benefit from outside advisors. The program will consist of three elements: independent studies with faculty across campus who will mentor student innovation projects; bi-weekly seminars for all student proto-companies in the program to build peer-mentoring networks (a result of feedback from mentors who said students were not “ready” to talk with them yet), share successes, answer questions and make them accountable to the group; and weekly networking sessions with external entrepreneurs.

Creative Design for Affordability

Cornell University, 2010 - $17,226

This grant supports the enhancement and institutionalization of Creative Design for Affordability (CDfA), a new course in the Johnson Graduate School of Management at Cornell University. CDfA, established in collaboration with faculty from Cornell’s College of Human Ecology Department of Design and Environmental Analysis, is an experiential course focused on the role that design and technology development plays in private sector innovation and social entrepreneurship.

Through this grant, Cornell faculty will be able to support approximately five multidisciplinary E-Teams per year working with peers in India on the development and launch of businesses addressing global societal challenges. Specifically, funding will help to strengthen the effectiveness of the interdisciplinary content of the course by supporting the integration of business, design, and technological innovation; ensure that cross-national, US-India E-Teams collaborate in creating viable technologies addressing critical problems; and assure E-Teams gain access to mentorship resources inside and outside the classroom.

Practicing Entrepreneurship: Creating value for a technology-based invention or idea

Michigan State University, 2010 - $29,500

This grant supports a new course in entrepreneurship at Michigan State University (MSU). Currently, the College of Engineering at MSU generates a number of invention disclosures every year from student-faculty teams, but the question of whether a business opportunity exists or not isn’t typically addressed.

The new course will introduce select students and faculty working on IP-generating projects to the entrepreneurial process (opportunity identification, IP strategy, market research, operations, financial analysis, etc.); provide students with a multidisciplinary team experience by including business students on each of the projects; and provide teams with experience in developing formal product feasibility and business plans, submitting them to Michigan’s Great Lakes Entrepreneurship Quest Competition and gaining “real-world” feedback. The program is integrated with university engagement in local economic development programs and has support from those programs for mentoring and support of successful student teams.

Master's Level Education in Bioengineering Innovation

Over the last four years, the Center of Bioengineering Innovation and Design (CBID, supported by an NCIIA Course and Program grant) within the Department of Biomedical Engineering at Johns Hopkins University has planned and launched a one-year master’s program focusing on the identification, creation and implementation of novel health care technologies.

This grant will fund prototype development costs for graduate student teams developing technologies in the CBID. Feedback from VCs and others emphasized the importance of developing very strong prototypes in order to increase the chances for securing funding and support. Faculty also plan to expand the program from twelve to fifteen students, and require teams to increase the number of and improve the quality of prototypes developed over the span of the program.

Updates:

Two biomedical device start-ups have spun out of the Master's Level Education in Bioengineering Innovation course:

Grant PI Bob Allen reports that so far 15 students have graduated from the program with MS degrees. JHPIEGO, JHU’s global health partner, is further developing two other projects from the grant: an electronic partogram and the antenatal screening kit (a 2010 E-Team grantee and Popular Science invention of the year).

Accelerating Student E-Team New Venture Creation through the Application of Industrial Design and Structured Seed Funding

Northeastern University, 2010 - $9,000

This grant, which builds on a previous NCIIA grant funding student technology projects in Northeastern University’s School of Technological Entrepreneurship, seeks to round out the program by adding two major components: 1) the inclusion of design students and mentors on E-Teams and funds for creating industry-grade prototypes, and 2) giving student teams access to incremental seed funding.

Northeastern will work in collaboration with the Massachusetts College of Art and Design. Students from the Mass Art Product Development Lab will be integrated into Northeastern’s I-Cubator teams. Based on student team investment pitches, teams will be given the opportunity to raise funds of up to $3,000, with a strategic focus on design as a key project component. At the end of the one-year program, projects may then be commercialized, returned to the I-Cubator for a second year, or terminated.

Technology Innovation for People with Disabilities

University of Pittsburgh, 2010 - $25,950

Assistive Technologies (ATs) can be the single most important factor in determining whether people with disabilities can participate fully in society. However, the abandonment rate for new ATs is disconcertingly high, with inappropriate design for the user being one of the most common reasons for failure.

The University of Pittsburgh’s Human Engineering Research Laboratory (HERL), which marries efforts on research- and user-driven innovations with the expertise of outside business collaborators, has had success commercializing ATs in the past, with five spin-offs to its name. This proposal seeks funding to augment a current NSF-funded HERL program, called Research Experience for Undergraduates, to support projects and educational activities related specifically to AT product development done by undergraduates. NCIIA funding will be used to support multidisciplinary teams of undergraduates working on innovation-focused projects, workshops focused on design innovation and commercialization, and tours of local companies that support early-stage product design in the AT industry.

The ultimate goal of the expanded program is the development of highly promising AT products that can be launched after completion of the NCIIA-funded project, improving the quality and increasing the quantity of highly impactful ATs.

Gen2 Agro

Ohio State University, 2010 - $20,000

Agricultural fungicides, which combat a number of plant blights and diseases, are estimated to prevent the loss of up to 95% of annual crop yields worldwide. At the same time, many current fungicides are petrochemicals that come with major financial and environmental costs from toxicity and chemical buildup in the soil. Organic fungicides offer a safer solution, but are currently much less effective and more expensive than chemical fungicides.

This E-Team, calling itself Gen2 Agro, is developing a next-generation organic fungicide that is over 20% more effective than current organic options, making it comparable in efficacy to chemical alternatives. Gen2 Agro’s product is composed of naturally occurring, non-genetically modified bacteria that has been found to directly attack fungi, secreting byproducts that suppress fungal growth. The team's fungicide will work for some of the world’s most valued crops, including soybeans, wheat, and potatoes.

ABSAL Desalination Systems

Rensselaer Polytechnic Institute, 2010 - $12,200

Although the ocean contains over 97% of the total water on Earth, less than 1% of world’s drinking water comes from the ocean. Desalination (the process of removing excess salt from water) on a large scale typically uses extremely large amounts of energy and requires specialized, expensive infrastructure, making it costly compared to the use of fresh water from rivers or groundwater. While most desalination technologies try to increase freshwater output by adding heat, making it an energy-intensive process, this E-Team is developing technology to harvest drinking water from the ocean using only solar energy. This is done by mimicking the water cycle: optimizing variables such as air flow, surface area, and liquid depth to increase evaporation.

The team is targeting developing countries with this technology, estimating a sixteen-gallon daily yield and a cost of $50 per unit for a scaled-down version.