R2I at CCI: Cornell Unversity

CCI Phase I: Center for Molecular Interfacing

The Center for Molecular Interfacing (CMI) will enable the integration of well-controlled molecular constituents within macroscopic systems by using graphene sheets and carbon nanotubes (CNTs) to achieve molecularly well-defined, reproducible and robust connections. This interdisciplinary and inter-institutional team of researchers will (1) study electrical and opto-electronic properties of graphene-molecule-graphene and CNT-molecule-CNT devices with mechanical adjustability, electrolytic gating, and optical access; (2) use AFM and STM to characterize the molecule-graphene interface; and (3) use advanced laser microscopy to identify and excite individual electrically-contacted molecules. This work will be enabled by the development of novel experimental platforms and techniques, synthesis of molecular architectures of deliberate design and function, and the development of a theoretical framework. Fundamental chemical processes such as self-exchange rates in redox reactions, the distance dependence of electron transfer, and photoinduced electron transfer can all be studied by precisely modulating the spacing in graphene-molecule-graphene structures.

These studies will provide the knowledge base to enable revolutionary advances in technologies such as energy conversion and storage, sensing, information technologies, and catalysis. The proposed work combines chemistry and physics at the cutting edge of science and technology and provides students with collaborative interdisciplinary research training. Particular emphasis will be placed in the recruitment and retention of women and underrepresented minorities at all educational levels. Young children in Puerto Rico will participate in a novel bilingual outreach program "Molecules meet Macro" in partnership with the Casa Pueblo Cooperative in Adjuntas, Puerto Rico. Center researchers will also participate in local news features, demonstrations and exhibits at a local science museum, and other public outreach projects.