2006

2006 BMEidea Winners: What are they up to?

First prize: Nanografts, University of California, Berkeley

With over 500,000 performed each year, coronary artery bypass surgery is the default procedure for people with severe heart disease. But the surgery, in which doctors remove a healthy blood vessel from the patient’s arm or leg and use it to build a detour around a blocked artery in the heart, isn’t without its drawbacks: 50% of vein grafts fail in 5-10 years, the surgery to harvest the vein is expensive and invasive, and some patients have veins that simply aren’t strong enough to act as a coronary bypass graft.

Synthetic grafts have long held promise as a way to improve on the vein graft, but have yet to be widely implemented. The biggest reason? They’re too big. The smallest currently possible diameter for a successful synthetic graft is around 5mm—too large to replace most coronary arteries, which range from 2-6mm. Additionally, many of today’s synthetic grafts are made from foreign materials that can be rejected by the body’s immune system, rendering them ineffective. It all adds up to a problem; or, looked at another way, an opportunity for innovation.

Craig Hashi is the innovator. The Berkeley bioengineering Ph.D. student, leader of the Nanografts team that grabbed first place in the 2006 BMEidea competition, has come up with a novel approach to synthetic grafts. He creates sheets made from polymer nanofibers, then seeds the sheets with the patient’s own bone marrow stem cells. The stem cells allow the sheets to mimic the native blood vessel tissue, reducing the risk of being rejected, and the nanofibers allow the building of grafts as small as .7mm in diameter. After letting the cells grow for a couple of days, the sheets are rolled into a tube, similar to the shape of an artery. Once implanted, the nanofiber tube degrades, leaving a fully functioning blood vessel.

Sound clean and simple? Not so much. Although Nanografts has certainly made progress since winning BMEidea funding, continuing their lab research and talking with venture capitalists, the biggest challenge remains the technology itself. This is radical stuff—giving the body the capability to grow wholly new veins—and will take time to develop. Says Hashi, “Right now, the biggest challenge we face is getting the technology to work—understanding what’s really going on with it. I’ve been finishing up a paper on the project, but we want to make sure we’re confident about the technology before we present something to the research community—we want to be able to show exactly how these stem cells work and what they do.”

Beyond the technical challenges, there are problems with using stem cells themselves. Due to the surgery timeline (the patient may not be able to wait several days for stem cells to grow), potential cost factors, and strict FDA regulations, the team believes moving away from a stem cell-based approach for the moment gives them the best shot at commercialization. “We understand that in order to commercialize this in the near future we’ll have to steer away from cell-based therapy,” says Hashi. “Adding stem cells is an extra step that slows down the implantation process, to say nothing of regulatory issues. But if you have a synthetic graft that’s readily available off-the-shelf, the surgeon can use it right away and implant it directly.”

Although the science is still in the early stages, Hashi has a plan for how to commercialize Nanografts. “Ideally, we’ll start with some small seed rounds, about 150-200k,” he says. “We’ll work six to nine months with that, and then hopefully talk to some more VCs, get a term sheet, and get in contact with people that can provide us with more corporate experience, more managerial direction. From there we take it to market.”

Participating in the BMEidea competition has given Hashi a way to connect with those VCs. “Getting national exposure as a result of winning the competition has gotten us a lot of attention that we wouldn’t have received otherwise,” says Hashi. “It really gives me credibility when I walk into a VC’s office. I can say, ‘I just won BMEidea, a national biomedical design competition. My team went through a rigorous competitive process and we were fortunate to win first place.’ It gives me not only confidence and credibility but a great way to begin the conversation.”

Update: The team, now incorporated as Nanovasc, received $4.7 million in venture capital funding in 2008.
 

Second prize (tie): UltraMed Ultrasound, Pennsylvania State University

Cancer experts believe that early detection is the best way to prevent the disease from turning fatal. Yet despite great advances in cancer research, early detection remains a significant challenge and mortality is still high—in 2006, cancer accounted for 25% of all illness-related deaths.

This Penn State team hopes to bring that number down with UltraMed Ultrasound, an improved ultrasound technology that makes the early detection of cancer easier.

The team, led by materials science PhD student Ioanna Mina and her professor, Susan Trolier-McKinstry, is concentrating initially on the early detection and diagnosis of breast cancer, particularly in women with high breast density. At present, doctors do not use ultrasound for routine breast cancer screening due to a high rate of false-positives (the machine detects cancer when in fact there is none). Mammography is the most popular breast cancer screening procedure, but comes with a major drawback: it fails to produce reliable results for women with dense breast tissue. Using mammography alone, only 55% of women with dense breast tissue and breast cancer are actually found to have the disease, meaning that almost half of all cases slip by undetected.

UltraMed will be able to detect cancer in those types of tissue by upping the ultrasound frequency, which in turn increases the image resolution. Current ultrasound transducers (the part that generates the sound) operate at a frequency of 1-16 MHz; the team’s new transducer will operate between 50 MHz and 1 GHz. At such high resolution, individual cells will be able to be distinguished as benign or cancerous no matter how dense the breast tissue, making early detection possible.

Like many BMEidea projects, this is complex (and promising) technology that will take time to develop. Since winning funding, the team has concentrated on developing a prototype of the transducer array, as well as designing and fabricating second-generation electronic systems for the device. According to Trolier-McKinstry, they are now in the process of testing those systems.

As far as commercialization is concerned, Trolier-McKinstry and Mina are working with Penn State to investigate establishing a start-up company in the area. The company would provide both a means of generating funding for research as well as a vehicle to commercialize the results. The business plan that the team developed for the BMEidea competition is being used as part of the basis for Penn State’s decision. A patent application on the technology was submitted in early May.

Prototype development and commercialization efforts aside, Trolier-McKinstry believes the BMEidea experience has thus far been educational. “As a professor,” she says, “it’s been a great learning experience for me. It’s also given Ioanna a chance to explore beyond the typical the typical bounds of a graduate student in the field of engineering.”

Mina agrees. “Participating in this competition and attending the NCIIA conference has, more than anything else, put me in contact with a lot of different people with a lot of different perspectives,” she says. “Through them I’ve been able to step back from the project a little and see how important this device really is—how important it is to commercialize it.”
 

Second prize: AnemiCAM, Brown University

Anemia, a pathological deficiency in hemoglobin, the oxygen-carrying component of the blood, can cause fatigue, organ dysfunction, poor pregnancy outcomes and, in children, can impair growth and motor and mental development. While the disease affects an estimated 3.5 million Americans, it is an epidemic in the developing world, affecting 50% of the population in some countries. Although easily diagnosable with a simple blood test and highly treatable thereafter, screening for anemia is a significant challenge in the developing world because physicians often lack the necessary laboratory infrastructure for blood testing—and even in areas with the right facilities, needle reuse is a serious problem.

The AnemiCAM team is looking to change all that. Winners of second place in the 2006 BMEidea competition, AnemiCAM is a simple, handheld device that enables physicians to quickly and non-invasively assess hemoglobin levels in the blood. No more needles, no more risk. And the device can be manufactured for less than $100.

AnemiCAM is based on simple principles. To do a quick anemia check, doctors typically pull down a patient’s lower eyelid and check the conjunctiva, the tissue that covers the front of the eye and lines the inside of the lid. If the tissue is pale, hemoglobin levels in red blood cells may be low, indicating anemia.

But this check isn’t definitive; accurate diagnosis still requires a blood test. Using a white LED, proprietary liquid crystal technology, photodetector, battery pack, and simple processing microchip, AnemiCAM examines the conjunctiva spectroscopically, allowing diagnosis to be made in less than ten seconds and with an estimated 95% accuracy when compared with needle-based blood tests.

The AnemiCAM team has made big strides since winning BMEidea (and NCIIA Advanced E-Team grant) funding a year ago. They have developed a second-generation prototype, performed a clinical trial, and will publish the results shortly. In 2006 they founded Corum Medical, a company built around the product, and on January 1, 2007 signed a license agreement with Brown to manufacture and sell AnemiCAM.

According to team leader, graduate student in BME and Corum co-founder John McMurdy, there are two main areas of concern for the team right now: getting the prototype ready, and getting further funding. As far as the technology is concerned, McMurdy says they are “working on getting the second prototype cut down to size. Our current prototype cost about $2,000; the next prototype, using our proprietary liquid crystal technology, will see a huge reduction in price and size, to about the size of an iPod shuffle.”

Other concerns for the prototype include power management (making sure the battery is long-lasting and doesn’t have to be replaced often), and making sure the device is easy to use, requiring little-to-no technician training.

The team is also making strides in its initial target market of Nigeria, employing an African trade consultant and a handful of PR people. “Right now we have two people in Lagos, Nigeria,” says McMurdy. “They’re talking to doctors, getting exposure for the device, collecting information, and generating word-of-mouth interest.”

And what has been the response to the device so far?

“Overwhelmingly positive,” says McMurdy. “Most people say that the device would be incredibly useful—but only at a certain price point. Our main focus is on making it affordable. We have to hit a certain price point before the device can have a widespread impact in our target markets.”

The team is actively pursuing funding, meeting with angel groups and venture capital firms. “We’ve had several follow-up meetings so far,” says McMurdy. “There is definitely a lot of interest around the device.”

In the meantime, BMEidea and Advanced E-Team funding has been, according to McMurdy, “absolutely crucial” for AnemiCAM. “[BMEidea and E-Team] support has helped us continue moving the project forward before getting the major angel or VC funding. It’s helped us bridge the gap between having little-to-no funding and significant seed money. Without that extra help, the engineering would not be moving forward right now.”

Update: Corum Medical won SBIR Phase I funding in 2008, as well as $25,000 from the Charles E. Culpeper Biomedical Initiative Pilot Program.
 

Third prize: Robopsy, Massachusetts Institute of Technology

The Robopsy team is making an inefficient process much more efficient.

A typical lung biopsy today takes two hours to complete, with doctors using a CT scan to find a suspect mass in a patient, inserting the needle, and taking a sample. The problem is that the doctor can’t be in the room during the scan due to radiation; instead, they watch the scan through a computer monitor and then return to the room to find the right spot for the biopsy manually. As the needle is gradually inserted, the doctor and support staff continually shuttle between the radiation-shielded control room (during scanning) and the CT room (when manipulating the needle), moving the patient in and out of the CT machine again and again.

A little invention that could simplify the process is Robopsy, a lightweight, disposable, dome-shaped device that holds a biopsy needle and sits on a patient's chest during a CT scan. Sitting in the CT room, the doctor uses a laptop to manipulate the needle remotely, putting an end to shuffling between rooms and guesstimating where the needle should go. The team believes Robopsy will not only cut down on procedure time, but also give doctors the ability to target very small lesions (~5mm) that cannot be targeted by hand, and reduce instances of pneumothorax (partial or full lung collapse) caused by missed punctures.

The team has made good progress since winning third place in the BMEidea competition. The two main team members, MIT mechanical engineering graduate students Conor Walsh and Nevan Hanumara, have dedicated themselves full time to the project. After nailing down the design specifications, they’ve started testing the device using CT machines at Massachusetts General Hospital.

They’ve also found other sources of funding, including $5,000 from the Boeing Prize at the 2005 MIT IDEAS competition and $4,000 from the Cambridge-based Center for the Integration of Medicine and Innovative Technology. In an exciting development, the team took first place in the MIT 100k Business Plan Competition, securing $30,000 for business development.

Challenges still remain, involving both the technical and business aspects of the project. Says Hanumara, “As far as the product itself goes, we’re designing a disposable robot as opposed to a more expensive, more durable one that would be retained from procedure to procedure. From one point of view it seems that designing a disposable robot is quite simple—if you’re throwing it out, why put a lot of care into the design? But we’ve discovered it’s actually much more difficult than that: you have to make sure it’s 100% reliable, just over a short period of time. So the mechanical design has been surprisingly challenging.”

For Walsh, the business end of the project has its own challenges. “We’re trying to hash out the best commercialization plan possible for the device,” he says. “We know it’s a valuable medical device that can improve patient care, but we also have to figure out the value proposition. We have to determine exactly how much time the device is going to save, and how much hospitals are willing to pay for that improvement.”

But while challenges still lie ahead, Walsh and Hanumara believe they have already benefited from taking part in the BMEidea competition. According to Walsh, the competition was “a great match for both of our interests. It’s definitely given us a platform to build on. I think the great thing about the competition is that it allowed us to gather our thoughts and put them into a coherent document. We were lucky enough to be recognized for that when we took third. And when other people see that we’ve been recognized, it makes a great stepping stone for meeting people.”

Hanumara echoes Walsh’s sentiments. “I thought that just going through the application process—just submitting to the contest—was very worthwhile. I know there were only thirty entries to BMEidea in 2006, which doesn’t sound like a lot, but that’s because the requirements are very strict. You really need to have your ducks in a row before submitting to BMEidea. Sitting down and thinking everything through beforehand was valuable in itself.”

Update: Robopsy went on to win first place in the 2008 ASME Innovation Showcase, a Massachusetts Technology Technology Transfer Consortium Award, and first place in the MIT MechE Excellence in Medical Device Design Prize.

Electrotactile Braille Display

Rose-Hulman Institute of Technology, 2006 - $1,500

This E-Team is developing an electrotactile Braille display to allow the blind to read text from a computer screen. The device, essentially a small box with lines of electrodes representing Braille dots, uses electrical pulses to stimulate the nerves in the user's fingertips, simulating the feel of raised Braille. The device downloads text from a computer through a USB connection.

There are other text-reading Braille displays on the market, but none that use electrical stimulation. Current devices move a series of pins up and down to change the Braille text being displayed, but the high number of small moving parts brings the price of these displays up to $10,000, limiting their market. The team estimates their device will cost a few hundred dollars.

Automated TB Diagnostic

Franklin W. Olin College of Engineering, 2006 - $17,250

This E-Team is developing an automated tuberculosis (TB) tester for the developing world. The current method of TB diagnosis, acid fast bacilli (AFB) sputum microscopy, is slow and unreliable: after collecting the sample, technicians spend 20-30 minutes looking for TB on a recommended 300 fields on each slide. Technician fatigue, lack of training, technician shortages and human error make sputum microscopy, especially in the developing world, highly inaccurate. By automating the slide reading process and replacing error-prone technicians, the team believes the TB tester will make TB diagnosis faster and more consistent, reducing resources wasted on false positives and letting fewer false negatives slip by.

Development and Commercialization of Innovative Wall-climbing Robots

CUNY City College, 2006 - $16,000

This E-Team is developing the City-Climber, a wall-climbing robot intended for use in the inspection of building facades. New York City law mandates the inspection of building facades every five years, and the task is currently accomplished by lowering three trained workers down the side of the building by scaffold equipment. Each additional drop to reach other areas of the façade requires a complete relocation of the rigging equipment, making the process time-consuming and expensive (the cost for one day can exceed $3,000). The E-Team’s robot adheres to the wall by employing aerodynamic attraction produced by a vacuum rotor package. Cameras and sensors inside the robot are used to assess the condition of the building façade, and the robot itself is remotely operated by a joystick.

Soy-Based Plasticizer

Ohio State University, 2006 - $14,000

This E-Team is evaluating the commercial potential of a soy-based plasticizer developed by Battelle, an Ohio-based non-profit research organization. Plasticizers are substances added to plastics or other materials to make or keep them soft and pliable. Polyvinyl chloride (PVC) plasticizers cause significant health problems and are banned for use in medical devices and toys, but current alternatives to PVC cannot deliver low cost, high performance, and non-toxicity. The team believes its soy-based plasticizer has the ability to do just that, offering an inexpensive, effective, non-toxic, renewable plasticizer. The technology is already developed and patented, and the team has put in 500 hours identifying market opportunities for it. The team is utilizing NCIIA funds to take the product to market: they will interview industry and market professionals, test product formulations, develop business and operational plans, and determine the best path to market.

Orion Security LSP LLC

Lehigh University, 2006 - $16,500

This E-Team, already incorporated as Orion Security LSP LLC, is in the process of completing prototype development of their low-cost GPS location device. The company, formed in Lehigh's Integrated Product Development program, currently runs a location-based service called Findum, which provides a person's location through a cellular telephone. The user, say a parent, logs onto Findum's online application, enters their username and password, and instantly acquires the exact location of the cell phone--say a child carrying it in her pocket.

While location-based services like this represent a growing industry with several competitors on the market, the high price of location devices (from $250-$800) have prevented explosive growth. However, the team has developed a manufacturing process that allows them to sell the devices for $50-$100. The team is now perfecting that manufacturing process and designing prototypes for their three target markets: collars for pets, shoe inserts for children, and vehicle devices for business-to-business fleet management.

Chemical-free Artisanal Mining Solution

Rensselaer Polytechnic Institute, 2006 - $17,500

Of the more than thirteen million individuals in fifty-five developing countries that depend on small-scale gold mining to survive, most employ an ancient and harmful practice called "mercury amalgamation" in order to extract the gold. After panning for gold in local bodies of water, the miners pour gold-bonding mercury into their pans to form a solid paste. They wash off excess mercury into the water and boil down the paste to yield pure gold. The mercury in the water poisons the miners, the communities living downstream, and pollutes the environment. The European Union, the world's largest global exporter of mercury, will soon ban mercury exports, putting tens of millions of artisanal gold miners out of work.

This E-Team has a solution: an inexpensive (~$30), manually powered centrifugal gold extraction device. Based on industrial-size gold centrifuges, the device uses lightweight modern plastics to create a hand crank-based centrifuge capable of extracting gold with little effort and without requiring mercury.

Two competitors exist, but both of their solutions still require the use of at least some mercury.

A Cell Phone-Based Personal Computer for Developing Communities

University of Massachusetts, Amherst, 2006 - $13,500

This E-Team is looking to address the digital divide between developed and developing countries by creating a low-cost cell phone with PC-like capability. The cell phone will have a general-purpose processor, removable flash memory, external keyboard, and the ability to output to a television. The team is focusing its initial efforts on India, where demand for cell phones is growing and television access is already established. The PI has a strong relationship with Microsoft Research India and Research in Motion, and will work with them on prototype development.

There are other "smartphones" on the market with functionality similar to the E-Team's design, but all come at considerable cost ($500+). The team will try to sell its device for less than $100.

Pratt Design Incubator - SMIT (Solar Ivy)

Pratt Institute, 2006 - $14,700

This E-Team is developing Solar Ivy, a solar panel designed to resemble ivy vines. Solar Ivy consists of flexible photovoltaic foil molded to look like ivy and piezoelectric generators acting as leaves. The foil produces solar energy. The team, the first to come out of Pratt Institute's Sustainably Minded Interactive Technology (SMIT) group, has partnered with a solar foil manufacturer, DayStar Technologies, and a piezoelectric manufacturer, Face International. The team intends the product to be an aesthetically pleasing alternative to standard solar panels, and plan to target multiple markets, including commercial, residential, and the developed and developing worlds.

Update:

Since 2011, Solar Ivy has focusing on developing and commercializing its Solar Ivy product.

In 2009, SMIT exhibited Solar Ivy at the MoMa Exhibition: Design and the Elastic Mind, and Design Philadelphia, where they were commissioned to outfit a bus stop in solar ivy. People who were waiting for the bus could simply plug in their cell phone to charge their battery. Solar Ivy has been featured in a number of magazines and was a concept design for a five-star luxury hotel in Zayed Bay, Abu Dhabi. Most recently, SMIT exhibited Solar Ivy at Dwell on Design for the Designboom Kitchen Ecology: Recipes for Good Design.

More media coverage:

Novel 3D Cell Culture Device for Drug Discovery and Biopharmaceutical Production

Brown University, 2006 - $15,236

Cells grown in a laboratory have an artificial two-dimensional environment instead of the natural 3D environment, which causes them to lose many of their natural traits, including drug response and protein protection. Inaccurate data from laboratory cells costs the pharmaceutical industry to millions on false positives and drugs that don't work.

This E-Team, known as NapTek Bioscience, has developed a 3D Petri dish known as the P3 gel, which enables scientists to culture cells in 3D. It creates tissue-like spheroids that are more similar to a cell's natural environment and provides much greater control of size and geometry. It is their hope that P3 gel will advance drug discovery and production and quickly gain market share within the cell culture industry.

Pull-Out Resistant Pedicle Screw for Osteoporotic Patients

Johns Hopkins University, 2006 - $18,500

Each year, approximately 550,000 osteoporotic patients in the US suffer from compression fractures that require pedicle screws in order to reconstruct the spine. These patients are currently given pain management treatments instead of pedicle screws, however, because osteoporotic bone isn't strong enough to hold the screws in, or prevent them from falling out. This E-Team plans to solve the problem by developing a pull-out resistant pedicle screw. The novel design, based on a vertebral compression fracture treatment known as kyphoplasty, consists of a two-part screw involving a hollow capture chamber and a threaded inner screw. The hollow chamber is inserted into the vertebral body, then the inner screw is brought through the chamber into a wet cement adhesive. As the cement cures, the stickiness of the screw is enhanced, providing greater pull-out resistance.

Starlight Stoves for India

Colorado State University, 2006 - $15,000

Two and a half billion people worldwide use traditional stoves for cooking, heating and lighting, resulting in severe indoor air pollution, overuse of natural resources and numerous health problems and deaths caused by smoke. There have been attempts to introduce improved stoves that minimize air pollution and reduce biomass consumption, but commercial success has been limited due to flawed designs: the stoves have robbed users of a source of light that would otherwise be obtained from an open fire. To solve the problem, this E-Team is developing the Starlight Stove, an improved stove that increases the efficiency of burning biomass while eliminating air pollution and acting as a source of light.

The stove consists of a cast-iron plate heated by an efficiency-increasing ceramic combustion chamber. Hot gas produced by the combustion of biomass is taken out of the room through a chimney. The light source, a five-watt device located above the stove and connected by a wire, is produced by a thermoelectric generator that creates a small amount of electricity when a temperature potential exists between its hot and cold sinks. The generator also has a fan to circulate warm air throughout the room.

Malawi Treadle Pump

Washington State University, 2006 - $12,500

This E-Team is addressing the problem of agricultural water shortages in Malawi, in sub-Saharan Africa. Without irrigation, local farmers produce 200g of maize per capita, while baseline nutrition calls for 600g per person. This grant aims to further develop and refine the team's existing water pump, conceived, produced and tested between September '04 and March '06, in part with NCIIA funding. Following a visit to Malawi to test their prototype, the team optimized the design and investigated local manufacturing and distribution possibilities. They also distinguished their product from competitors by sourcing locally available parts, thereby ensuring that when pumps fail they can be repaired on-site, cheaply and quickly.

Update:

GlobaMED Devices: Global Anemia Detection & Treatment

Brown University, 2006 - $20,000


Although anemia is a highly preventable disease, it often goes undetected in the developing world due to a lack of labs for testing and the high cost of equipment. To combat the problem, this E-Team is developing AnemiCAM, a rapid, inexpensive, non-invasive method of measuring blood hemoglobin levels. The device, which can be manufactured for under $30, examines the conjunctiva (the mucous membrane lining the inner surface of the eyelid and the exposed surface of the eyeball) and allows measurements to be made in less than ten seconds and with 95% accuracy.

The team founded Corum Medical in 2006, an early stage medical instrument company focused on AnemiCAM (now called LumenI). In 2007 the company signed a license agreement with Brown University and Rhode Island Hospital that gives Corum exclusive worldwide rights to the noninvasive method of measuring hemoglobin.

A Device to Accurately Access the Epidural Space for Administration of Anesthesia

Stanford University, 2006 - $18,500

This E-Team is developing a safer, more controlled method of performing an epidural. The current technique involves the advancement of a needle into the epidural space, relying heavily on a steady hand and the ability to halt needle advancement once loss of resistance is detected. Since this is a time-consuming process with a complication rate of 5-20%, epidurals are not used as often as they could be; less than half of epidural-eligible patients actually receive one.

The team's device consists of a rotating blunt-tipped syringe attached to a flexible shaft and operated by a pump actuator equipped with a safety alert button. This design has four advantages over the traditional model: 1) the blunt tip allows the physician to dissect, instead of cut, through to the epidural space, making the procedure easier and safer; 2) the device uses rotation to create controlled advancement of the needle, relying less on a steady hand; 3) the flexible shaft minimizes the torque encountered with a rigid one-piece system; and 4) the design maintains the familiar and reliable loss-of-resistance method to detect the epidural space.

A Method to Prevent Heart Dilation and Progression to Heart Failure

Stanford University, 2006 - $20,000

Congestive heart failure is a lethal disease characterized by the inability of the heart to pump enough blood to meet the body's demands. Up to two-thirds of cases of CHF are initially caused by a heart attack, putting the cardiac wall under significant stress and triggering a series of changes that can cause the heart to enlarge. Currently there are no effective treatments for CHF, as drugs slow down but do not prevent the progression of the disease, and passive restraints to support the heart and prevent dilation are highly invasive and aimed only at individuals with end-stage CHF.

To combat these problems, this E-Team is developing a minimally invasive, polymer-based approach to physically support the heart of recent heart attack victims, preventing the heart from enlarging. The device involves the delivery of a primer and polymer that crosslink in the pericardial space around the heart. First, the heart is coated with the primer, which bonds to the heart surface. Next, the polymer is delivered to the same space and crosslinks with the primer, forming a thin elastic structure that provides physical support for the heart. The polymer will have enough elasticity to allow for proper filling and emptying of the heart, and will be biodegradable in order to provide support to the heart only during the vulnerable period immediately following a heart attack.

AID-N E-Team

University of Maryland, 2006 - $17,500

Two chronic problems currently affect hospital administration in the US: 1) monitoring patients' vital signs to ensure their safety, and 2) managing staff workload. This E-Team is looking to solve both problems by developing the Aid Network (AID-N), a wireless patient monitoring system for hospitals. AID-N consists of patent-pending low-cost wireless medical sensors, called eTags, that automate the process of monitoring vital signs. The eTags continuously transmit patient vital signs to the provider's computer (a handheld PDA style device), and generates an alarm when a patient's condition deteriorates. Beyond improving patient safety, this technology could relieve some of the workload of the medical team.

The team has formed a company, Aid Networks.

VertaChem Commercialization Proposal

Drexel University, 2006 - $16,000

In partnership with the US Army, this E-Team developed an environmentally friendly alternative to styrene. Styrene is a potentially carcinogenic petroleum derivative that has harmful effects on the environment and is highly regulated by the EPA. The team's product is a soybean oil derivative that can replace styrene in thermoset resins (raw materials used in the fiber-reinforced products industry). The soybean oil is environmentally friendly (safe and renewable), performs better than styrene, and costs less.

Dynamic Ankle-Foot Orthosis

Johns Hopkins University, 2006 - $15,126

People with ankle problems such as arthritis often wear supportive devices to help them walk. Traditionally ankle braces have been custom manufactured to meet specific patient needs, but in recent years there has been a movement toward prefabricated devices. While current prefabricated devices are capable of completely supporting the ankle, they often suffer from a lack of durability: the junction between the footplate and the upper support fails. Due to the high failure rates of existing products, physicians have voiced a need for a structurally sound and supportive ankle brace.

This E-Team is hoping to fill the need by designing a brace that incorporates the idea of recoil energy. The design includes a one-piece "sock" structure to allow for a greater fitting range, a resilient carbon-fiber foot-shin plate to provide the lever action that alleviates pressure at the ankle during walking, and stress distribution, particularly around the foot-plate strut joint that typically fails.

A Novel Hydrogel Microfiber for Small Diameter Vascular Grafts

Johns Hopkins University, 2006 - $19,900

Every year more than 500,000 coronary artery bypass surgeries are performed worldwide. While autografting (taking tissue from one part of the body and moving it to another) is the preferred technique, there are limitations: autografts cannot be obtained multiple times from one patient, and they fail when the patient lacks healthy blood vessels. Synthetic polymers are used in cases of weak blood vessels, but not when making small diameter vascular grafts (less than five mm) due to risks of stenosis (abnormal narrowing of a bodily canal or passageway), and thrombosis (a clot of coagulated blood attached at the site of formation in a blood vessel).

To fill the need for small diameter vascular grafts for people with weak blood vessels, this E-Team is developing the Hydrogel Microfiber, a hollow, polymeric cylinder in which living endothelial cells can be encapsulated. Concentric layers can be added to this fiber, each containing its own cell population. Once implanted in the patient, the cells in the fiber grow over time and eventually become fully integrated with the vessel wall.

Rotavirus Vaccination via Oral Thin Film Delivery

Johns Hopkins University, 2006 - $16,000

Rotavirus, a disease affecting children age five and younger, kills 600,000 people every year in the developing world. The virus infects the villi of the small intestines, leading to severe diarrhea, vomiting, high fever and dehydration. While rotavirus vaccines exist, they are currently delivered only in liquid form in a syringe, making the vaccine difficult to administer to infants and requiring expensive refrigeration to maintain. Building on thin film technology such as the popular Listerine Breath Strips, this E-Team is developing a method of delivering a rotavirus vaccine orally, on thin film. The team believes this design will have many advantages over current syringe-based methods, including simplifying storage and distribution due to the film's light weight and ability to be stored without refrigeration, and easier delivery to infants.

Above photo by Will Kirk.

Update:

2006 Olympus Innovation Award Winners

 

The NCIIA recognizes Dr. John Ochs, Lehigh University; Dr. Michael Lovell, University of Pittsburgh; and Dr. John Kleppe, University of Nevada-Reno as the 2006 winners in the Olympus Innovation Award Program. The program recognizes individuals who have fostered and demonstrated innovative thinking in education.

The winners received their awards from Dr. Stephen S. Tang, group vice president and general manager, Life Science, Olympus America, in Portland, Ore. at the 10th Annual Meeting of the National Collegiate Inventors and Innovators Alliance (NCIIA), Olympus' partner in conducting the program. "I am honored to have served as Olympus' judge for our 2006 award program with the NCIIA, and I salute the winners for their outstanding accomplishments," said Tang. "They have not only been exemplary teachers but also champions of innovation and entrepreneurship, which are integral parts of our culture at Olympus and critical for companies to successfully compete in today's global economy."

"We are excited about the extended award program, which allows us to recognize the work of more individuals," added Phil Weilerstein, executive director, NCIIA. "Through this program, Olympus continues its strong commitment to education as an important way to foster innovation in America."

Ochs, Lovell and Kleppe were selected from numerous qualified faculty nominated by colleagues at NCIIA member institutions, including many top colleges and research institutions in the United States. The winners were determined by a committee of five judges, including Steven Nichols, professor of mechanical engineering, University of Texas at Austin, the winner of the 2005 inaugural Olympus Innovation Award; Tang; Weilerstein; Dr. Abigail Barrow, founding director, Massachusetts Technology Transfer Center; and Dr. Arthur A. Boni, deputy director and John R. Thorne professor, Donald H. Jones Center for Entrepreneurship, Carnegie Mellon University.

2006 BMEidea Winners: What are they up to?

First prize: Nanografts, University of California, Berkeley

With over 500,000 performed each year, coronary artery bypass surgery is the default procedure for people with severe heart disease. But the surgery, in which doctors remove a healthy blood vessel from the patient’s arm or leg and use it to build a detour around a blocked artery in the heart, isn’t without its drawbacks: 50% of vein grafts fail in 5-10 years, the surgery to harvest the vein is expensive and invasive, and some patients have veins that simply aren’t strong enough to act as a coronary bypass graft.

Synthetic grafts have long held promise as a way to improve on the vein graft, but have yet to be widely implemented. The biggest reason? They’re too big. The smallest currently possible diameter for a successful synthetic graft is around 5mm—too large to replace most coronary arteries, which range from 2-6mm. Additionally, many of today’s synthetic grafts are made from foreign materials that can be rejected by the body’s immune system, rendering them ineffective. It all adds up to a problem; or, looked at another way, an opportunity for innovation.

Craig Hashi is the innovator. The Berkeley bioengineering Ph.D. student, leader of the Nanografts team that grabbed first place in the 2006 BMEidea competition, has come up with a novel approach to synthetic grafts. He creates sheets made from polymer nanofibers, then seeds the sheets with the patient’s own bone marrow stem cells. The stem cells allow the sheets to mimic the native blood vessel tissue, reducing the risk of being rejected, and the nanofibers allow the building of grafts as small as .7mm in diameter. After letting the cells grow for a couple of days, the sheets are rolled into a tube, similar to the shape of an artery. Once implanted, the nanofiber tube degrades, leaving a fully functioning blood vessel.

Sound clean and simple? Not so much. Although Nanografts has certainly made progress since winning BMEidea funding, continuing their lab research and talking with venture capitalists, the biggest challenge remains the technology itself. This is radical stuff—giving the body the capability to grow wholly new veins—and will take time to develop. Says Hashi, “Right now, the biggest challenge we face is getting the technology to work—understanding what’s really going on with it. I’ve been finishing up a paper on the project, but we want to make sure we’re confident about the technology before we present something to the research community—we want to be able to show exactly how these stem cells work and what they do.”

Beyond the technical challenges, there are problems with using stem cells themselves. Due to the surgery timeline (the patient may not be able to wait several days for stem cells to grow), potential cost factors, and strict FDA regulations, the team believes moving away from a stem cell-based approach for the moment gives them the best shot at commercialization. “We understand that in order to commercialize this in the near future we’ll have to steer away from cell-based therapy,” says Hashi. “Adding stem cells is an extra step that slows down the implantation process, to say nothing of regulatory issues. But if you have a synthetic graft that’s readily available off-the-shelf, the surgeon can use it right away and implant it directly.”

Although the science is still in the early stages, Hashi has a plan for how to commercialize Nanografts. “Ideally, we’ll start with some small seed rounds, about 150-200k,” he says. “We’ll work six to nine months with that, and then hopefully talk to some more VCs, get a term sheet, and get in contact with people that can provide us with more corporate experience, more managerial direction. From there we take it to market.”

Participating in the BMEidea competition has given Hashi a way to connect with those VCs. “Getting national exposure as a result of winning the competition has gotten us a lot of attention that we wouldn’t have received otherwise,” says Hashi. “It really gives me credibility when I walk into a VC’s office. I can say, ‘I just won BMEidea, a national biomedical design competition. My team went through a rigorous competitive process and we were fortunate to win first place.’ It gives me not only confidence and credibility but a great way to begin the conversation.”

Update: The team, now incorporated as Nanovasc, received $4.7 million in venture capital funding in 2008.
 

Second prize (tie): UltraMed Ultrasound, Pennsylvania State University

Cancer experts believe that early detection is the best way to prevent the disease from turning fatal. Yet despite great advances in cancer research, early detection remains a significant challenge and mortality is still high—in 2006, cancer accounted for 25% of all illness-related deaths.

This Penn State team hopes to bring that number down with UltraMed Ultrasound, an improved ultrasound technology that makes the early detection of cancer easier.

The team, led by materials science PhD student Ioanna Mina and her professor, Susan Trolier-McKinstry, is concentrating initially on the early detection and diagnosis of breast cancer, particularly in women with high breast density. At present, doctors do not use ultrasound for routine breast cancer screening due to a high rate of false-positives (the machine detects cancer when in fact there is none). Mammography is the most popular breast cancer screening procedure, but comes with a major drawback: it fails to produce reliable results for women with dense breast tissue. Using mammography alone, only 55% of women with dense breast tissue and breast cancer are actually found to have the disease, meaning that almost half of all cases slip by undetected.

UltraMed will be able to detect cancer in those types of tissue by upping the ultrasound frequency, which in turn increases the image resolution. Current ultrasound transducers (the part that generates the sound) operate at a frequency of 1-16 MHz; the team’s new transducer will operate between 50 MHz and 1 GHz. At such high resolution, individual cells will be able to be distinguished as benign or cancerous no matter how dense the breast tissue, making early detection possible.

Like many BMEidea projects, this is complex (and promising) technology that will take time to develop. Since winning funding, the team has concentrated on developing a prototype of the transducer array, as well as designing and fabricating second-generation electronic systems for the device. According to Trolier-McKinstry, they are now in the process of testing those systems.

As far as commercialization is concerned, Trolier-McKinstry and Mina are working with Penn State to investigate establishing a start-up company in the area. The company would provide both a means of generating funding for research as well as a vehicle to commercialize the results. The business plan that the team developed for the BMEidea competition is being used as part of the basis for Penn State’s decision. A patent application on the technology was submitted in early May.

Prototype development and commercialization efforts aside, Trolier-McKinstry believes the BMEidea experience has thus far been educational. “As a professor,” she says, “it’s been a great learning experience for me. It’s also given Ioanna a chance to explore beyond the typical the typical bounds of a graduate student in the field of engineering.”

Mina agrees. “Participating in this competition and attending the NCIIA conference has, more than anything else, put me in contact with a lot of different people with a lot of different perspectives,” she says. “Through them I’ve been able to step back from the project a little and see how important this device really is—how important it is to commercialize it.”
 

Second prize: AnemiCAM, Brown University

Anemia, a pathological deficiency in hemoglobin, the oxygen-carrying component of the blood, can cause fatigue, organ dysfunction, poor pregnancy outcomes and, in children, can impair growth and motor and mental development. While the disease affects an estimated 3.5 million Americans, it is an epidemic in the developing world, affecting 50% of the population in some countries. Although easily diagnosable with a simple blood test and highly treatable thereafter, screening for anemia is a significant challenge in the developing world because physicians often lack the necessary laboratory infrastructure for blood testing—and even in areas with the right facilities, needle reuse is a serious problem.

The AnemiCAM team is looking to change all that. Winners of second place in the 2006 BMEidea competition, AnemiCAM is a simple, handheld device that enables physicians to quickly and non-invasively assess hemoglobin levels in the blood. No more needles, no more risk. And the device can be manufactured for less than $100.

AnemiCAM is based on simple principles. To do a quick anemia check, doctors typically pull down a patient’s lower eyelid and check the conjunctiva, the tissue that covers the front of the eye and lines the inside of the lid. If the tissue is pale, hemoglobin levels in red blood cells may be low, indicating anemia.

But this check isn’t definitive; accurate diagnosis still requires a blood test. Using a white LED, proprietary liquid crystal technology, photodetector, battery pack, and simple processing microchip, AnemiCAM examines the conjunctiva spectroscopically, allowing diagnosis to be made in less than ten seconds and with an estimated 95% accuracy when compared with needle-based blood tests.

The AnemiCAM team has made big strides since winning BMEidea (and NCIIA Advanced E-Team grant) funding a year ago. They have developed a second-generation prototype, performed a clinical trial, and will publish the results shortly. In 2006 they founded Corum Medical, a company built around the product, and on January 1, 2007 signed a license agreement with Brown to manufacture and sell AnemiCAM.

According to team leader, graduate student in BME and Corum co-founder John McMurdy, there are two main areas of concern for the team right now: getting the prototype ready, and getting further funding. As far as the technology is concerned, McMurdy says they are “working on getting the second prototype cut down to size. Our current prototype cost about $2,000; the next prototype, using our proprietary liquid crystal technology, will see a huge reduction in price and size, to about the size of an iPod shuffle.”

Other concerns for the prototype include power management (making sure the battery is long-lasting and doesn’t have to be replaced often), and making sure the device is easy to use, requiring little-to-no technician training.

The team is also making strides in its initial target market of Nigeria, employing an African trade consultant and a handful of PR people. “Right now we have two people in Lagos, Nigeria,” says McMurdy. “They’re talking to doctors, getting exposure for the device, collecting information, and generating word-of-mouth interest.”

And what has been the response to the device so far?

“Overwhelmingly positive,” says McMurdy. “Most people say that the device would be incredibly useful—but only at a certain price point. Our main focus is on making it affordable. We have to hit a certain price point before the device can have a widespread impact in our target markets.”

The team is actively pursuing funding, meeting with angel groups and venture capital firms. “We’ve had several follow-up meetings so far,” says McMurdy. “There is definitely a lot of interest around the device.”

In the meantime, BMEidea and Advanced E-Team funding has been, according to McMurdy, “absolutely crucial” for AnemiCAM. “[BMEidea and E-Team] support has helped us continue moving the project forward before getting the major angel or VC funding. It’s helped us bridge the gap between having little-to-no funding and significant seed money. Without that extra help, the engineering would not be moving forward right now.”

Update: Corum Medical won SBIR Phase I funding in 2008, as well as $25,000 from the Charles E. Culpeper Biomedical Initiative Pilot Program.
 

Third prize: Robopsy, Massachusetts Institute of Technology

The Robopsy team is making an inefficient process much more efficient.

A typical lung biopsy today takes two hours to complete, with doctors using a CT scan to find a suspect mass in a patient, inserting the needle, and taking a sample. The problem is that the doctor can’t be in the room during the scan due to radiation; instead, they watch the scan through a computer monitor and then return to the room to find the right spot for the biopsy manually. As the needle is gradually inserted, the doctor and support staff continually shuttle between the radiation-shielded control room (during scanning) and the CT room (when manipulating the needle), moving the patient in and out of the CT machine again and again.

A little invention that could simplify the process is Robopsy, a lightweight, disposable, dome-shaped device that holds a biopsy needle and sits on a patient's chest during a CT scan. Sitting in the CT room, the doctor uses a laptop to manipulate the needle remotely, putting an end to shuffling between rooms and guesstimating where the needle should go. The team believes Robopsy will not only cut down on procedure time, but also give doctors the ability to target very small lesions (~5mm) that cannot be targeted by hand, and reduce instances of pneumothorax (partial or full lung collapse) caused by missed punctures.

The team has made good progress since winning third place in the BMEidea competition. The two main team members, MIT mechanical engineering graduate students Conor Walsh and Nevan Hanumara, have dedicated themselves full time to the project. After nailing down the design specifications, they’ve started testing the device using CT machines at Massachusetts General Hospital.

They’ve also found other sources of funding, including $5,000 from the Boeing Prize at the 2005 MIT IDEAS competition and $4,000 from the Cambridge-based Center for the Integration of Medicine and Innovative Technology. In an exciting development, the team took first place in the MIT 100k Business Plan Competition, securing $30,000 for business development.

Challenges still remain, involving both the technical and business aspects of the project. Says Hanumara, “As far as the product itself goes, we’re designing a disposable robot as opposed to a more expensive, more durable one that would be retained from procedure to procedure. From one point of view it seems that designing a disposable robot is quite simple—if you’re throwing it out, why put a lot of care into the design? But we’ve discovered it’s actually much more difficult than that: you have to make sure it’s 100% reliable, just over a short period of time. So the mechanical design has been surprisingly challenging.”

For Walsh, the business end of the project has its own challenges. “We’re trying to hash out the best commercialization plan possible for the device,” he says. “We know it’s a valuable medical device that can improve patient care, but we also have to figure out the value proposition. We have to determine exactly how much time the device is going to save, and how much hospitals are willing to pay for that improvement.”

But while challenges still lie ahead, Walsh and Hanumara believe they have already benefited from taking part in the BMEidea competition. According to Walsh, the competition was “a great match for both of our interests. It’s definitely given us a platform to build on. I think the great thing about the competition is that it allowed us to gather our thoughts and put them into a coherent document. We were lucky enough to be recognized for that when we took third. And when other people see that we’ve been recognized, it makes a great stepping stone for meeting people.”

Hanumara echoes Walsh’s sentiments. “I thought that just going through the application process—just submitting to the contest—was very worthwhile. I know there were only thirty entries to BMEidea in 2006, which doesn’t sound like a lot, but that’s because the requirements are very strict. You really need to have your ducks in a row before submitting to BMEidea. Sitting down and thinking everything through beforehand was valuable in itself.”

Update: Robopsy went on to win first place in the 2008 ASME Innovation Showcase, a Massachusetts Technology Technology Transfer Consortium Award, and first place in the MIT MechE Excellence in Medical Device Design Prize.

2006 BMEidea Winners

First prize: NanoGraft Technologies

- University of California Berkeley

A tissue engineering approach that constructs “smart,” adaptable vascular grafts (Nanografts) from bone marrow stem cells for coronary artery bypass procedures.

 

Second prize (tie): Ultramed Ultrasound Breast Cancer Detection

- Pennsylvania State University

A breakthrough in ultrasound technology using multi-element, high frequency transducers with scalable frequency ranges to allow real-time tissue biopsies and non-destructive imaging for breast cancer detection.

 

Second prize (tie): AnemiCAM

- Brown University

A device that allows doctors to quickly and accurately detect anemia (low hemoglobin) in patients by reflecting light in the conjunctiva, within the lower eyelid.

 

Third prize: Robopsy

- Massachusetts Institute of Technology

A telerobotic biopsy system that uses a small, disposable actuator device to grip, orient, and insert a biopsy needle from within a Computed Topography (CT) gantry.

What the 2006 winners were up to 1.5 years after winning

Profile: Rotavirus Vaccination via Oral Thin Film Delivery

Rotavirus, a disease affecting children age five and younger, kills 600,000 people every year in the developing world. The virus infects the villi of the small intestines, leading to severe diarrhea, vomiting, high fever and dehydration. While rotavirus vaccines exist, they are currently delivered only in liquid form in a syringe, making the vaccine difficult to administer to infants and requiring expensive refrigeration to maintain. Building on thin film technology such as the popular Listerine Breath Strips, this E-Team is developing a method of delivering a rotavirus vaccine orally, on thin film. The team believes this design will have many advantages over current syringe-based methods, including simplifying storage and distribution due to the film’s light weight and ability to be stored without refrigeration, and easier delivery to infants.


Creating Business/Engineering Multidisciplinary E-Teams

University of Chicago

This grant supports the creation of a two-course sequence in which student teams spend their senior year working with industry and/or regional entrepreneurs to develop a product idea and bring it to the prototype stage. E-Teams are comprised of engineering and business students who participate in the capstone course as well as a seminar series on ethics, leadership and entrepreneurship. All of the E-Teams focus on the needs of the first-responder community as well as medical applications, thus allowing students to gain both an appreciation for entrepreneurship and a respect for the contributions made by law enforcement, fire fighters, and EMS personnel

Entrepreneurship through Experiential Learning and Community Service

Florida Institute of Technology

This grant supports the development of a two-quarter undergraduate-level honors course entitled “Entrepreneurship through Innovative Interdisciplinary Projects in Technology and Community Service” to be offered in spring and fall 2007. The course entails student E-Teams partnering with a nonprofit agency to develop solutions to specific issues the agency faces. Once solutions are devised, E-Teams will assess the technical and commercial viability of the solutions themselves. The course will be taught by seven faculty members from four disciplines. During the initial implementation of the course, both students and faculty will attend a private seminar each quarter at Eureka! Ranch, a private think tank with a focus on innovation, marketing and personal leadership

Advanced Design in Biomedical Engineering

Smith College

This grant supports the expansion of an undergraduate course in biomedical design. The course engages undergraduate students in creative design before they reach their senior capstone course, encouraging students to develop and maintain their creativity while motivating further independent course-based learning. In the end, the course hopes to provide students with theoretical and practical design experience, an introduction to entrepreneurship in biomedical engineering, and an introduction to the discipline

Osteoporosis Screening Tool

Wright State University, 2006 - $17,870

Osteoporosis, while widespread, is highly preventable with the right diet, regular exercise and bone density measurements. Regularly scheduled bone density measurements can detect the disease early on, reducing the number of debilitating fractures and mortality. The gold standard for bone density measurement is dual-energy x-ray absorptiometry (DXA), but only 10% of the at-risk population undergoes routine DXA examinations due to the expense of the machine and the fact that it requires dedicated space and personnel.

This E-Team opened up osteoporosis screening to a wider population by developing a tool that can be used in a dental care setting. Using dual-energy measurement, the device gives conventional dental x-ray equipment the ability to measure bone density in the mandible (jaw) and phalanges (fingers and toes).

VertaChem

University of Maryland-College Park

In partnership with the US Army, this E-Team has developed an environmentally friendly alternative to styrene. Styrene is a potentially carcinogenic petroleum derivative that has harmful effects on the environment and is highly regulated by the EPA. The team’s product is a soybean oil derivative that can replace styrene in thermoset resins (raw materials used in the fiber-reinforced products industry). The soybean oil is environmentally friendly (safe and renewable), performs better than styrene, and costs less

EcoTech NanoSystems: BioShield Technology

Lehigh University, 2006 - $19,492

The EcoTech E-Team from Lehigh, winner of two previous E-Team grants, used this grant to develop an advanced surface coating that prevents the growth of algae, mold, and other biological organisms on a wide variety of surfaces, from aquarium glass to home siding. Called BioShield™, the patented technology uses sunlight and water to react with organic matter, making it difficult for organisms to attach to surfaces. While BioShield™ is ready for commercialization in the aquarium market, the team is conducting further R&D to bring it to other markets, specifically animal husbandry (preventing algae growth on cattle troughs) and residential homes (decks, patios, roofing, etc.). Ultimately, the team hopes to create a transparent “spray-on” coating sold through home improvement stores like Home Depot.

Update: The EcoTech team has gone on to form a successful aquarium products company. Visit their website here.

Flashback Lighting System

University of Massachusetts, Lowell, 2006 - $18,000

This grant supported the development of Flashback, a device that shines light on the back of a bicycle rider during low light conditions. The device, which extends several inches behind the rider using a sturdy tube connected to the bicycle seat post, consists of a small plastic housing embedded with super-bright light-emitting diodes. The diodes are powered by a small battery pack attached to the base of the device.

The team developed a working prototype and tested it at night, showing it to be much brighter than the standard bike reflector.

Rensselaer and Grupo de Apoyo at Sector Rural for a Sustainable Peru

University of Wisconsin-Whitewater

Getting appropriate technology to rural areas in Peru is very difficult due to the geographical dispersion of the approximately 70,000 rural communities living in extreme poverty. To help solve the problem, Rensselaer Polytechnic Institute (RPI) is collaborating with Grupo de Apoyo al Sector Rural at the Pontificia Universidad del Peru, and the Inca-Bus mobile technology education program in Peru, to create and build systems for sustainable sources of energy, clean water, and air for the rural population using interdisciplinary student design teams from the Engineers for a Sustainable World and Society of Hispanic Professional Engineers chapters at RPI. Projects will be identified and evaluated based on impact on basic human needs and potential for commercialization, providing long-term sources of income for these communities. The plan also includes curriculum development, student life and professional development, as well as research and technology transfer

BME Design for Global Healthcare Technologies

Stanford University

Northwestern University has an undergraduate capstone design course that includes travel for students to work with researchers at the University of Cape Town in Africa. While students have been able to provide clear needs assessments and propose solutions to identified problems, it has become clear that there needs to be a way to maintain continuity on these projects so that they ultimately become product solutions. This grant supports the creation of an MS program as a way to further support the capstone projects. Specifically, the outcome of this project will be a new program that forms a track within the existing MS and BS-MS programs, but requires additional formal training in Healthcare Technology Management at the University of Cape Town and experience in acting as team leaders for the capstone project teams

Sustainable Manufacturing in Kenya: Collaborative Design of an Agricultural Utility System

University of North Carolina at Charlotte

With this grant, the service learning program at PSU will work to improve rural Kenyans’ economic well-being by addressing challenges of low agricultural productivity due to the use of simple instruments and tools. Service learning program-enrolled PSU students will work with students from the University of Nairboi and Moi University in improving a variety of devices, concentrating on making manually powered machines that significantly improve productivity. These devices will come with attachments that allow the machine to be powered by a small attachable petrol engine. It is expected that farmers' incomes will increase with the use of the improved manual devices, making it possible for them to purchase an engine, thus increasing productivity even further. Examples of potential devices include water pumps, electric generators, posho mills, decorticators, tillers, and power tools

Sustainable Micro-Enterprise Development and Management

Northeastern University

For this grant, Ithaca College is partnering with Ecuadorian NGO Fundacion Maquipucuna (FM), an established organization with non-profit and for-profit wings that sells a range of fair trade, organic products in the US and elsewhere under its brand name, Choco-Andese. The partnership is meant to develop micro-enterprises in Ecuador based around poverty alleviation and environmental sustainability and will build on the ideas of students participating in a course administered this past year.

Ithaca hopes to send more students to Ecuador with this project and bring in partners for work on other projects, such as partnering with Cornell to use synthetic roof thatch made out of waste plastic to make homes more comfortable by absorbing heat

KlarAqua Advanced E-Team Continuation Project: Low Cost Water Purification System and Service Organization to Support Development of Micro-Enterprises in Developing Countries and Other Applications

Illinois Institute of Technology, 2006 - $13,500

This E-Team developed KlarAqua, an inexpensive, bucket-size, clay-based water filter aimed at people in the developing world. During the first NCIIA grant, the team partnered with students at Tec de Monterrey in Mexico, site of the team’s initial target market, and discussed strategies for getting the filter into the hands of the target population. During the second grant, the team conducted a phase II pilot study to assess and demonstrate the effectiveness and efficiency of the filter and developed the associated educational, training, and marketing materials. Specifically, the team refined the KlaqAqua design, developed a customizable training program on how to use the filter, refined the business model (micro-enterprises manufacturing and selling the filter locally), and developed a long-range plan for broad implementation.

The team selected the town of San Luis Potosi in Mexico as the site of the pilot study due its need for clean water, proximity to Tec de Monterrey, and its representative socioeconomic characteristics.

KlarAqua won first place in the annual Idea to Product Social Entrepreneurship Competition, sponsored by Purdue University and held at San José State University. The $15,000 I2P prize money helped move the innovation closer to market.

Development and Commercialization of Innovative Wall-climbing Robots

Rose-Hulman Institute of Technology

This E-Team is developing the City-Climber, a wall-climbing robot intended for use in the inspection of building facades. New York City law mandates the inspection of building facades every five years, and the task is currently accomplished by lowering three trained workers down the side of the building by scaffold equipment. Each additional drop to reach other areas of the façade requires a complete relocation of the rigging equipment, making the process time-consuming and expensive (the cost for one day can exceed $3,000). The E-Team’s robot adheres to the wall by employing aerodynamic attraction produced by a vacuum rotor package. Cameras and sensors inside the robot are used to assess the condition of the building façade, and the robot itself is remotely operated by a joystick
Syndicate content