grant

Spark: A University-Level Initiative for Innovation and Entrepreneurship Florida Atlantic University (Planning Grant)

Florida Atlantic University, 2010 - $7,500

Florida Atlantic University (FAU) recently established a university-level Innovation and Entrepreneurship Platform with the goal of integrating and enhancing entrepreneurial activity at FAU. As part of the initiative, this grant will help lay the groundwork for the development of two new programs: the Spark Incubator and a Certificate in Innovation and Entrepreneurship at Spark.

Developing a Cross-Disciplinary E-Team to Enhance Innovation and Entrepreneurship at Louisiana State University (Planning Grant)

Louisiana State University, 2010 - $7,500

This planning grant supports the development of a plan for programs to support student entrepreneurship at Louisiana State University through a new interdisciplinary course in entrepreneurship, a business plan competition, and a mentorship program. The three-pronged program is designed to stimulate the formation of LSU's first E-Teams, involving undergraduates, faculty and counselors from technical, business and humanities disciplines. The overall aim of their efforts is to prepare undergraduates to become contributors to both the local Louisiana economy and the global economy.

Entrepreneurship Initiative for Rural Southeastern North Carolina (Planning Grant)

University of North Carolina at Pembroke, 2010 - $8,000

The University of North Carolina at Pembroke (UNCP) serves a diverse regional community of 38% Native Americans, 32% Caucasians, 25% African Americans, and 5% Hispanics and others. UNCP is located among the poorest counties in the nation, with unemployment between 12% and 18% and per capita income 40% below the national average. In order to help the regional economy, efforts are underway to promote entrepreneurship through the Thomas Family Center for Entrepreneurship (TFCE). The TFCE is a UNCP-affiliated organization whose goal is to promote entrepreneurship education at UNCP and provide free entrepreneurial consulting for local area residents.

This grant provides seed money to lay the groundwork for a follow-on proposal to create innovation-driven pathways for university students to lead new business development in this economically underprivileged area.

Drexel Smart House Student Seed Fund

Drexel University, 2010 - $25,000

Drexel Smart House is a student-led, research-driven organization at Drexel University working to develop a sustainable model for urban residential living. The organization engages students in multidisciplinary teams working on a number of green projects, including a lightweight green roof, residential water recovery system, urban crop cultivation, energy recovery systems and more.

This grant will create the Drexel Smart House Student Seed Fund, which will allow students to conduct early research and prototype development. Drexel Smart House has shown that access to early seed funding for preliminary research and prototypes greatly improves prospects for expanded research funding and industry collaboration.

The new eighteen-month program will fund individual, student-proposed projects ranging in cost from $100-$2,500. Student-developed short proposals will be reviewed by a faculty member and a student review board. Project proposals will be from teams working on freshman or senior engineering design projects, multidisciplinary teams, graduate student teams, and undergraduate/graduate teams.

Sustainable Medical Device Innovation for Developing Countries

Johns Hopkins University, 2010 - $41,500

This grant supports a new course, Sustainable Medical Device Innovation for Developing Countries, in Johns Hopkins’ Center for Bioengineering Innovation and Design (CBID). The course, being developed as a core requirement for a new one-year MS program at CBID, will have the explicit aim of training students in the process of identification, invention and implementation of healthcare technologies that solve clinical problems in developing countries.

Students will learn through immersive clinical experience, partnering with hospitals and community health centers in South Asia and Southern Africa. Over the course of two semesters, they will work in teams to invent and prototype multiple solutions to problems they identify, develop a clinical trial plan, identify manufacturing partners, and develop an appropriate business model. Once the projects reach a certain level of maturity, teams will receive intensive mentoring on how to pursue further funding opportunities to fully implement their ideas (Gates Foundation, USAID, etc.).

Cross-disciplinary development teams to make students' ideas real

Ohio Northern University, 2010 - $19,500

This grant supports the transformation of a year-long engineering capstone course into an E-Team-generating experience that takes the best new product ideas on campus and turns them into real prototypes and potential business ventures. There will be three steps to the program: 1) in a spring “Ideas Competition,” students will pitch their ideas to a review board made up of entrepreneurs/investors; 2) E-Teams will be formed around each of the five winning ideas; 3) the following spring, the E-Teams will compete in a business plan competition, with the winning teams receiving substantial funds to continue development of their projects beyond the capstone timeframe.

The teams will be comprised of students from engineering, business and law.

Bridge Mentorship Program for Advanced Student Companies at UMass Amherst

University of Massachusetts Amherst, 2010 - $29,000

The NCIIA-funded UMass Amherst Entrepreneurship Initiative (UMassEI), a one-credit course, has greatly increased student participation in entrepreneurship on University of Massachusetts Amherst campus, having grown from five students in 2007 to over 200 from thirty majors running over 100 active student companies. While UMass faculty are currently formalizing a program that connects the most advanced of these student companies to outside mentors, increasing their chances for success, there remains a large gap between the mature teams and the teams in need of support. Many student companies lack the maturity or level of development to take advantage of the mentorship program after completing the one-credit UMassEI class.

This grant will help bridge the gap and connect more students more effectively to outside programs and mentors. Faculty will develop a “bridge program” for students, with the objective of providing early student companies with the knowledge and support they need to cross the gap between completing the introductory course and reaping maximum benefit from outside advisors. The program will consist of three elements: independent studies with faculty across campus who will mentor student innovation projects; bi-weekly seminars for all student proto-companies in the program to build peer-mentoring networks (a result of feedback from mentors who said students were not “ready” to talk with them yet), share successes, answer questions and make them accountable to the group; and weekly networking sessions with external entrepreneurs.

Creative Design for Affordability

Cornell University, 2010 - $17,226

This grant supports the enhancement and institutionalization of Creative Design for Affordability (CDfA), a new course in the Johnson Graduate School of Management at Cornell University. CDfA, established in collaboration with faculty from Cornell’s College of Human Ecology Department of Design and Environmental Analysis, is an experiential course focused on the role that design and technology development plays in private sector innovation and social entrepreneurship.

Through this grant, Cornell faculty will be able to support approximately five multidisciplinary E-Teams per year working with peers in India on the development and launch of businesses addressing global societal challenges. Specifically, funding will help to strengthen the effectiveness of the interdisciplinary content of the course by supporting the integration of business, design, and technological innovation; ensure that cross-national, US-India E-Teams collaborate in creating viable technologies addressing critical problems; and assure E-Teams gain access to mentorship resources inside and outside the classroom.

Master's Level Education in Bioengineering Innovation

Over the last four years, the Center of Bioengineering Innovation and Design (CBID, supported by an NCIIA Course and Program grant) within the Department of Biomedical Engineering at Johns Hopkins University has planned and launched a one-year master’s program focusing on the identification, creation and implementation of novel health care technologies.

This grant will fund prototype development costs for graduate student teams developing technologies in the CBID. Feedback from VCs and others emphasized the importance of developing very strong prototypes in order to increase the chances for securing funding and support. Faculty also plan to expand the program from twelve to fifteen students, and require teams to increase the number of and improve the quality of prototypes developed over the span of the program.

Updates:

Two biomedical device start-ups have spun out of the Master's Level Education in Bioengineering Innovation course:

Grant PI Bob Allen reports that so far 15 students have graduated from the program with MS degrees. JHPIEGO, JHU’s global health partner, is further developing two other projects from the grant: an electronic partogram and the antenatal screening kit (a 2010 E-Team grantee and Popular Science invention of the year).

Accelerating Student E-Team New Venture Creation through the Application of Industrial Design and Structured Seed Funding

Northeastern University, 2010 - $9,000

This grant, which builds on a previous NCIIA grant funding student technology projects in Northeastern University’s School of Technological Entrepreneurship, seeks to round out the program by adding two major components: 1) the inclusion of design students and mentors on E-Teams and funds for creating industry-grade prototypes, and 2) giving student teams access to incremental seed funding.

Northeastern will work in collaboration with the Massachusetts College of Art and Design. Students from the Mass Art Product Development Lab will be integrated into Northeastern’s I-Cubator teams. Based on student team investment pitches, teams will be given the opportunity to raise funds of up to $3,000, with a strategic focus on design as a key project component. At the end of the one-year program, projects may then be commercialized, returned to the I-Cubator for a second year, or terminated.

Technology Innovation for People with Disabilities

University of Pittsburgh, 2010 - $25,950

Assistive Technologies (ATs) can be the single most important factor in determining whether people with disabilities can participate fully in society. However, the abandonment rate for new ATs is disconcertingly high, with inappropriate design for the user being one of the most common reasons for failure.

The University of Pittsburgh’s Human Engineering Research Laboratory (HERL), which marries efforts on research- and user-driven innovations with the expertise of outside business collaborators, has had success commercializing ATs in the past, with five spin-offs to its name. This proposal seeks funding to augment a current NSF-funded HERL program, called Research Experience for Undergraduates, to support projects and educational activities related specifically to AT product development done by undergraduates. NCIIA funding will be used to support multidisciplinary teams of undergraduates working on innovation-focused projects, workshops focused on design innovation and commercialization, and tours of local companies that support early-stage product design in the AT industry.

The ultimate goal of the expanded program is the development of highly promising AT products that can be launched after completion of the NCIIA-funded project, improving the quality and increasing the quantity of highly impactful ATs.

Gen2 Agro

Ohio State University, 2010 - $20,000

Agricultural fungicides, which combat a number of plant blights and diseases, are estimated to prevent the loss of up to 95% of annual crop yields worldwide. At the same time, many current fungicides are petrochemicals that come with major financial and environmental costs from toxicity and chemical buildup in the soil. Organic fungicides offer a safer solution, but are currently much less effective and more expensive than chemical fungicides.

This E-Team, calling itself Gen2 Agro, is developing a next-generation organic fungicide that is over 20% more effective than current organic options, making it comparable in efficacy to chemical alternatives. Gen2 Agro’s product is composed of naturally occurring, non-genetically modified bacteria that has been found to directly attack fungi, secreting byproducts that suppress fungal growth. The team's fungicide will work for some of the world’s most valued crops, including soybeans, wheat, and potatoes.

Relay Technology Management, Inc.

Tufts University, 2010 - $18,000

This E-Team is developing software to make the technology transfer process from academia to industry in the bio and pharma space more efficient. Calling themselves Relay Technology Management, the team is developing software that provides industry in-licensing and corporate strategy groups with competitive intelligence on specific research happening inside universities, and also enables university technology transfer offices to manage their IP portfolios and market the right technologies to the right industry partners.

Specifically, the software will: 1) enable faculty members to enter invention disclosures in a secure, online system; 2) generate an actionable report to the technology transfer office; and 3) market the opportunity to the right industry partner based on licensing needs and sponsored research initiatives.

The business model will be based on a subscription fee to industry partners. The product will be marketed to companies in the biotechnology, pharmaceutical, diagnostic, medical device, chemical, physical and clean technology industries. Large players in this space have already confirmed a need for such a service, and have begun pre-ordering subscriptions.

Update:

Relay Technology Management launched Business Development Live, a unified, real‐time data visualization, comparative asset analysis and tracking platform for the life sciences industry (May 2012).

Mobile Information Aggregator (MIA)

Massachusetts Institute of Technology, 2010 - $16,500

While the world’s small-scale rural farmers have traditionally been overlooked in global markets, they’re gaining increased access to essential services including financial tools (banking, loans) and IT resources (mobile, internet). At the same time, there has been a global spike in demand for organic, fair-trade products, and small-scale farmers are well positioned to take advantage of the opportunity while at the same time generating employment and income. The challenge for most small-scale farmers is getting their goods to market.

This E-Team is developing the Mobile Information Aggregator (MIA), a mobile application/tool that farmers can use to gain access to global markets. Though a text message on a simple cell phone, the MIA tracks the frequency, quantity of production, and prices that farmers sell via a text message, which then links into a central database system.   The MIA provides historical and real-time data to farming cooperatives so that they can make better business decisions, and will help this E-team to understand what cooperatives are producing and help farmers aggregate demand, connect with markets and increase their income.

Update (2010) 

The team has launched a company, Supply Change, a fair trade, organic fruit company which uses fruit that would otherwise be wasted, processing it into high-value, high-quality products to provide income for farmers and nutritious food for consumers. Individual farmers send their harvest information to their cooperative on a weekly basis via a simple text message. This harvest information is then fed into a central database, producing real-time data that cooperative managers access to make better business decisions to maximize farmers current production, matching supply and market demand. All of this before the food rots and is wasted.

 

Leveraged Freedom Chair Indian Trial and Dissemination

Massachusetts Institute of Technology, 2010 - $16,500

This E-Team is developing the Leveraged Freedom Chair (LFC), a lever-propelled wheelchair designed specifically to meet the mobility needs of people with disabilities in developing countries. Any wheelchair designed for developing countries needs to be both maneuverable in the home and able to travel long distances on rough roads; the LFC meets the requirements with a lever drive train that allows the rider to use mechanical advantage to efficiently traverse virtually any terrain.

The LFC looks like a normal wheelchair, but with tall levers pointing up from the wheels and a bike-like third wheel attached the to axle. Placing your hands high on the levers and pumping them back and forth generates high torque and an effective low gear; placing your hands low on the levers creates high angular velocity in the drivetrain and an effective high gear.

The E-Team will design and test the LFC in partnership with the largest disability organization in the world, the Indian organization Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS), Jaipur, also known as Jaipur Foot.

Updates:

  • CNN features the Freedom Chair (April 2011)
  • The team will produce 200 chairs in June 2012 and have capacity to make 500/month. In a small test of ten users in India, four individuals with LFCs gained employment as a result of their newfound mobility.
  • The team is a finalist for MassChallenge and recently released a new 2-minute video (October 2012)
  • GRIT was one of four $100k Diamond Winners at MassChallenge. Congrats! (October 2012)

Aqua Port Water Transporter

Massachusetts Institute of Technology, 2010 - $17,517

Over one billion people worldwide lack access to clean water, the most basic need for human survival. Within that number, many spend up to eight hours per day walking to the nearest water source, collecting water in heavy buckets, and making the long journey home. According to the UN Millennium Goal Report, forty billion work hours are lost in Africa each year due to time spent transporting water.

This E-Team is developing the Aqua Port, a water transporter that consists of several large plastic cylinders with wheels. The units are threaded onto a horizontal axle and rolled from the water source to the user’s home.

The team is relying heavily on research, testimonials and data from NGO workers, professors, and consumers throughout Africa in designing the device. It fulfills the three major needs they’ve identified for a water transporter: easy to transport, lift, fill, and pour; affordable for people living on less than two dollars per day; and able to transport large amounts of water.

CalSolAgua

University of California, Berkeley, 2010 - $18,400

Middle-income families in emerging markets around the world would like to have the same hot shower their counterparts in wealthier countries experience every morning. Demand for comfort technologies like water heaters is growing quickly in these markets, but the current options for water heating are either very expensive (tank heaters) or low quality (biomass burning), and all emit significant amounts of carbon. Both the upfront and ongoing energy costs of water heating technologies in, for example, Mexico, make hot water a well-guarded comfort.

The CalSolAgua (CSA) team has developed a low cost solar water heating system capable of reducing energy costs for households in developing countries while also reducing carbon dioxide emissions. CSA’s solar water heater can retail for about $100—one-fourth of the price of competing water tank heaters.

OsmoPure

Rensselaer Polytechnic Institute, 2009 - $10,500

This E-Team is developing OsmoPure, a low-cost water purification device for developing countries based on simple membrane filtration technology. While there are a number of water filtration devices being marketed to the poor, many of them don’t work in murky water (they get easily clogged), often require a large energy input in order to work (e.g., hand pumping), and fail to remove all contaminants. OsmoPure is a compact, cartridge-based, multi-stage water purification system. To produce potable water, the user fills a plastic bottle with dirty water, screws on the purifier like you would screw on a cap and squeezes the bottle to dispense clean water. When the filter looks dirty, the user simply shakes the fluid inside to remove debris. The purifiers are meant for plastic bottles that exist currently as rubbish in the target areas, cutting production and distribution costs and creating an environmentally friendly solution to the global water crisis.

Updates:

OsmoPure wins $100,000 at MassChallenge (Nov. 2010)

Fast Company story (Dec. 2010)

Solar Ease

University of Pittsburgh, 2009 - $20,000

While solar energy is an attractive option to provide the green energy of the future, it remains burdened by high installation costs and hasn’t been as widely adopted as it should be. Part of the problem is the physical process of installation: solar panels require mounting brackets, outside breakers and ground connections, and holes through walls for the wires. This E-Team is looking to reduce the cost of installing solar panels by developing a method to transmit solar energy wirelessly from outdoor solar panels to an indoor storage unit. The team is building on a novel wireless technology called WiTricity, which is capable of transmitting energy through walls without direct cable connections. With NCIIA funding the team will create a proof-of-concept prototype, research target markets and applications for the technology, and move toward commercialization by writing a business plan and securing IP.

Syndicate content